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1. Introduction

Tearing modes represent a class of magnetohydrodynamic 
(MHD) instabilities that can negatively impact the perfor-
mance of magnetically confined plasmas. These instabili-
ties alter the magnetic field topology, lead to the formation 
of magnetic islands, increase the local radial transport and 
degrade plasma confinement. This is particularly impor-
tant in reversed field pinch (RFP) devices [1]. In the RFP, 
tearing modes are responsible for the transformation between 
poloidal and toroidal magnetic flux, maintaining the reversal 
of toroidal magnetic field. They also play an important role 
in the anomalous transport of particles and energy in the core 
region of RFP plasmas. Hence, understanding the physics of 
tearing modes in the RFP is important.

Energetic particles are inevitably produced in burning 
plasmas and their confinement is important for self-sustained 
heating and maintaining the integrity of the first wall in 
fusion reactors. Significant effort has been devoted to inves-
tigating the interaction of energetic particles and MHD 
instabilities [2, 3]. However, the study on the interaction 
between tearing modes and energetic particles has only 

recently begun. Both theory and experiment have shown that 
the interaction between tearing modes and energetic parti-
cles can be effective [4–10]. Some experiments [4–6] have 
shown that neoclassical tearing modes (NTMs) can enhance 
the loss of energetic particles, and energetic particles can 
stabilize NTMs in turn. Recently, the effects of energetic 
ions on linear tearing modes have been studied by theory 
and simulation [8–10]. It was found that energetic ions affect 
the stability of tearing modes mainly through interaction 
with the ideal outer region [9, 10], and the effects of cir-
culating energetic ions (CEI) on tearing modes depend on 
the magnitude of energetic ion pressure and their toroidal 
circulating direction. Previous studies on the interaction 
between tearing modes and energetic particles focused on 
the tokamak geometry. However, energetic particles are also 
abundant in RFPs with neutral beam injection. Recent exper-
iment in Madison Symmetric Torus (MST) RFP showed that 
the amplitude of tearing modes is decreased with co-neutral 
beam injection [11], namely tearing mode is stabilized by 
co-CEI. Due to the unique RFP characteristics, such as low 
q(q is the safety factor), the physics of the effect of energetic 
ions on tearing modes in RFP maybe different from that in 
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tokamak. Energetic ions in the experiment in MST with tan-
gential neutral beam injection are primarily circulating and 
thus we will investigate the effect of CEI on tearing modes 
in this article.

In section 2, a heuristic picture is presented. In section 3, 
the ideal MHD equation  in the outer region including the 
effects of energetic ions for tearing modes is derived, and the 
stability criterion is calculated based on the parameters in 
MST. Finally, the conclusion is given in section 4.

2. Physical picture

In this section, to understand the underlying physics, a heu-
ristic interpretation is described. The physics is similar to 
that provided for the tokamak [9], except for the inclusion 
of energetic ion precession drift, due to low q(q < 1) and 
high n(n ≫ 1) in the RFP. Due to the drift orbit of energetic 
ions being much larger than the resistive layer width of the 
linear tearing mode, the effect of energetic ions on tearing 
modes is mainly through the interaction between energetic 
ions and the ideal outer region of tearing modes. Namely, 
energetic ions can change the value of the stability criterion 
Δ′ (the jump discontinuity in the logarithmic derivative of 
the perturbed magnetic poloidal flux at the resonance sur-
face), which determines the stability of tearing modes. Δ′ is 
obtained from the ideal MHD equation in the outer region 
of tearing mode. In the outer region of tearing mode without 
energetic ions, b·∇ J∥ = 0 (where b = B/B is the direction 
of magnetic field, J∥ is the parallel current) in the low-β 
plasmas, where the diamagnetic current due to the pressure 
of background plasma is not considered. Then, J∥ = J∥(Ω) is 
a flux function, where Ω = Q(ψ) + δ ψ, d Q/d ψ = 1 − q/qs (ψ 
and δ ψ is the equilibrium and perturbed poloidal function, 
respectively. qs = m/n is the value of q on resonant surface, 
m and n are the poloidal and toroidal mode number, respec-
tively), satisfying b·∇Ω = 0. Then the perturbed current can 
be obtained as δJ∥ = − (d J∥0/d r) (1 − q/qs)−1 δ ψ, which is the 
ideal MHD equation in outer region of tearing mode. With 
energetic ions, the equation becomes b·∇ J∥ +∇·J⊥h = 0 (J⊥h 
is perpendicular current of energetic ions), J∥ is no longer 
a flux function. One can separate J∥ = J∥,c + J∥,h, satisfying 
b·∇ J∥,c = 0, b·∇ J∥,h +∇·J⊥,h = 0, where J∥,c, J∥,h are the 
parallel current of background plasma and energetic ions, 
respectively. The behavior of background plasma is not 
changed, so the parallel current perturbation of background 
plasma δJ∥,c = − (d J∥,c0/d r) (1 − q/qs)−1 δ ψ, where J∥,c0 is 
the background plasma equilibrium current. For energetic 
ions, fh = fh(Qd +  a2 δ ψ) can be obtained, where fh is the dis-
tribution of energetic ions, d Qd/d ψd = 1 − q/qs − ωd/(qs ωt), 
a2 ⩽ 1 denotes the orbit average effect, ωd, ωt are the preces-
sional frequency and transit frequency, respectively. Thus, 
one can obtain the perturbation current of energetic ions 
δJ∥,h = − < Z e v∥ (d fh/d r) a2 δ ψ/(1 − q/qs −  ωd/(qs ωt) > , 
where < … > denotes the integration over velocity space, Z 
is the particle charge number. Hence, the total perturbation 
of plasma current
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where the first term on the right hand of equation (1) results 
from the MHD effect, the second term on the right hand 
of equation  (1) denotes the orbit average effect on the per-
turbation current of energetic ions. It tends to reduce the 
perturbation current of energetic ions. Thus, given the equi-
librium currrent, the orbit average effect of energetic ions 
tends to stabilize tearing modes for co-CEI, while desta-
bilize tearing modes for counter-CEI. This effect is well 
described in the [9, 10]. The last term on the right hand of 
equation  (1) represents the perturbation current due to the 
precessional drift of particles. If the precessional frequency 
is very small, satisfying ∣ωd/((qs −q) ωt)∣ ≪  1 near the reso-
nance surface, it reduces to the normal diamagnetic current. 
This is always satisfied in tokamak or for thermal particles. 
On the other hand, if the precessional frequency is large,  
∣ωd/((qs −q) ωt)∣ ≫   1 near the resonance surface, it means 
that CEI have a net drift after the bounce average, which can 
produce parallel perturbed current. It also depends on the 
toroidal circulating direction of CEI, which is similar to the 
orbit average effect. In tokamaks, the effect of precessional 
drift of CEI is neglected due to ∣ωd/((qs −q) ωt)∣ ≪  1, except 
very close to resonant surface, as done in [9]. However, in the 
RFP, ∣ωd/((qs −q) ωt)∣ ∼ O (1) in some region near the reso-
nant surface due to q < 1 and n > 1, which was pointed out in 
[12]. Thus, the effect of precessional drift of tearing modes is 
important in the RFP.

3. Stability criterion of tearing modes

In this section, based on the above physical picture, the 
detailed calculation will be shown. In the outer region, the 
linearized equations are

 δ δ δ δ−∇ −∇ + × + × =p
c c

p J B J B·
1 1

0,c h (2)

 δ δ·∇ + ·∇ =p pB B 0,c c (3)

 δ δ δ δ= + −⊥ ∥ ⊥( )p p pp I bb,h h hh , , , (4)

where δpc is the perturbed pressure of background plasma, 
which is assumed to be isotropic and incompressible. δ ph is 
the pressure tensor of energetic ions, satisfying the Chew–
Goldberger–Low [13] pressure tensor form. J,  δ J are the 
equilibrium and perturbed currents, respectively. B, δ B are 
the equilibrium and perturbed magnetic field, respectively. I 
is the unit tensor, b = B/B denotes the direction of equilibrium 
magnetic field. Making the operation ∇·[ B/B2 × (...)] on equa-
tion (2), one can obtain
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where σ  =  J∥/B. The equilibrium magnetic field can be 
expressed as

 ζ ζ ψ= ∇ + ∇ × ∇IB , (6)

where the toroidal geometry is assumed to be axisymmetric. The 
symmetric coordinate, (ψ, θ, ζ) are chosen as flux coordinates. 
θ and ζ are the poloidal and toroidal angle, respectively. For 
tearing modes, the perturbed magnetic field can be written as

 δ δ= ∇ × ∥( )AB b . (7)

For simplicity, single helicity is considered, namely the form of per-
turbation can be expressed as δ δ θ ζ ω= − −∥ ∥A A r m n t( )exp(i i i )� .  
Then, making the integral ∮d θ J exp(− i m θ + i n ζ) on equa-
tion (5), one can obtain
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where J = (∇ψ × ∇θ·∇ζ)−1 is the Jacobian. Then, following 
the procedure of [14], equation (8) can be derived as

 δψ π δ+ =θL
rB B

G
K

4 i
0,

2

(9)
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where F = m Bθ − n ϵ Bζ, G = m Bζ + n ϵ Bθ, δ ψ = G δA∥/B,  
g = (d pc/d r)/B2, ϵ = r/R0 is the aspect ratio. Without energetic 
ions, equation (9) reduces to equation (17) in [14]. Next, to obtain 
the expression of δ ph, it is necessary to solve the perturbed distri-
bution of energetic ions. The linearized drift kinetic equation [15] is
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where Pζ = − Z e ψ/c + v∥I/B0 is the toroidal momentum, 
E  =  v2/2 is the kinetic energy, Q  =  (−i)  Z  e  (ω  −n  ω*) 
(∂Fh/∂E), ω* = (∂Fh/∂Pζ)(∂Fh/∂E)−1, vd is the magnetic drift 
velocity of particles, δ ϕ is the perturbed electrostatic poten-
tial, δA satisfies δA∥ = c b·∇δA/(i ω). For ideal MHD, the 
perturbed electric field δE∥ = 0, so δA = δ ϕ. To solve δh, it 
is convenient to introduce a transform coordinate (rd, θd, α), 
satisfying rd = r − q ρh cos θ, θd ≃ ωt t, α = q θ − ζ ≃ ωd t for 
well circulating particles, where ωt = v∥/(J B), ωd = − vd Bθ/
(r  B0), Ω= ∥v v R/ ( )d c

2 , ρh  =  v∥/Ωc, q  ρh is the orbit width 
of particles, Ωc is the gyro-frequency, Bθ is the equilibrium 
poloidal magnetic field. In this coordinate, equation  (13) 
can be rewritten as
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where the subscript d denotes the variables defined in the rd, 
kθ = (m Bζ + n r Bθ/R)/(r B), kr = − i (∂δA/∂r)/δA, Jl(λ) is the 
Bessel function, λ = kr q ρh. Here, the terms with O(q ρh/a) 
are neglected, while the effect of O(q ρh/Δm) (Δm is the mode 
width) is kept. Then, integrating equation (14) over t, one can 
obtain
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Making the reversed transform to the coordinate (r,  θ,  ζ), 
equation (15) can be derived as
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Now, the perturbed distribution of CEI is obtained. Based 
on the expressions (12) and (16), and using the definition 

∫δ δ=∥ ∥p vv fdh h
3 2 , equation (11) can be derived as
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where δ ̂Kf , δ ̂Kk represent the adiabatic and kinetic contribu-
tions of CEI, respectively. Here, the high harmonic ∣l∣  ⩾  1 
terms are neglected, and large aspect ratio is assumed.

To proceed, it is assumed that the equilibrium distribution 
∑=

ν
νF Fh,0 satisfies slowing-down model for a population of 

formed CEI by a purely co-CEI (ν = +) component or a purely 
counter-CEI (ν =−) component, as

 π
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where λ  =  μ/E denotes the pitch angle, Em is the maximal 
energy, H(x) is the step function. As done in [9], it is assumed 
that α≃J0

2 . α<1 is a constant coefficient. Then equation (17) 
can be reduced to
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where ω is neglected for tearing modes, CI = 1 + 2 χ +2 χ2 
ln[(1 − χ)/(−χ)], χ ρ= − ν( )m nq R n( ) / hm0 , ρ ν Ω=ν E2 /hm m c, 
ω ω ρ= ν R/ /d t h 0 is employed. The physics of δK is similar to 
that in equation (1). The first term on the right hand of equa-
tion (21) represents the effect of precessional drift effect, and 
the last term denotes the orbit average effect on the perturbed 

current of energetic ions. If ∣χ∣  ≫   1, the precessional fre-
quency is very small, the first term in δK reduces to the usual 
diamagnetic drift current. For tokamaks, ∣χ∣ ≫   1 is always 
satisfied, except very narrow region close to the resonant sur-
face, so the effect of precessional drift can be neglected, as 
done in [9]. For RFP, ∣χ∣ ∼ O (1) for energetic ions in some 
region near the resonant surface, due to the q < 1 and n > 1 in 
the RFP, which is pointed out in [12]. Thus, the effect of pre-
cessional drift on tearing modes can be important in the RFP. 
Substituting equation (21) into equation (9), one can obtain
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where the parameters are normalized as follows: r  →  a  r, 
→ ̂B B B(0) , β π=ν νp B8 / (0)h h

2 . Here, the imaginary part of 
δK is not considered, since it induces a real frequency, which 
is not important for tearing mode in outer region as the inertia 
term. From equation (22), it can be known that co-CEI plays 
a stable role on tearing modes, while counter-CEI plays an 
unstable role on tearing modes with dβh/d r < 0. This is consis-
tent with the physical picture in section 2. If the precessional 
effect is neglected, equation (22) is equivalent to that in [9] in 
tokamak geometry. Thus, based on equation (22), the stability 
criterion Δ′ for tearing mode can be calculated.

For typical RFP like MST, the main parameters B0 = 0.3 T, 
a  =  0.5  m, R0  =  1.5  m. The profiles of equilibrium current 
and pressure are σ = σ0 (1 − rμ), σ0 = 2 a/(q (0) R0), βc = βc0  
(1.04 + 0.52 r2 −6.78 r4 +7.68 r6 −2.47 r8) (βc = 8 π pc/B2(0), 
pc is the background pressure), βh = βh0 (3.5*exp(−r2/0.044)), 
where βc0, βh0 are used to modify the weight of βc, βh, respec-
tively. Plasma beta at axis β (0) = βc(0) + βh(0). Considering 
m = 1, n = 5 mode, β (0) = 7% and 25 keV ions formed by 
CEI, the equilibrium profiles can be seen in figure 1. Based on 

Figure 1. The equilibrium profiles with β (0) = 0.07, βfrac = 0.5 (βfrac = βh(0)/β (0)).
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equation (22), the stability criterion Δ′ for tearing modes can 
be calculated, which can be seen in figure 2. It can be found that 
the effect of CEI on tearing modes is dramatic, and depends 
on the toroidal direction of CEI. For counter-CEI, as the frac-
tion βfrac of counter-CEI increases, Δ′ increases. For co-CEI, 
as βfrac increases, Δ′ decreases, and becomes negative if βfrac 
is sufficiently large. Thus, counter-CEI tends to destabilize 
tearing modes, while co-CEI stabilizes tearing modes. This is 
consistent with the physics picture pointed out in section 2, and 
it is also qualitatively consistent with the recent experimental 
results in MST [11], where it was shown that the amplitude of 
tearing modes was reduced when co-NBI was injected.

4. Conclusion

In this article, the effects of CEI on tearing modes in RFP 
have been studied. In contrast to little precessional drift 
effect of CEI on tearing modes in tokamak, the precessional 
effect of CEI on tearing modes is important in RFP, since 
ωd/((m − n q) ωt) ∼ O (1) near the resonant surface due to 
low q and high n in RFP. It is found that the effects of CEI 
on tearing modes have a great relation to the magnitude of 
βh, and depend on the toroidal circulating direction of CEI. 
For co-CEI, energetic ions can reduce the value of stability 
criterion Δ′ of tearing modes, and stabilize tearing modes, 
even suppress tearing modes. For counter-CEI, energetic ions 
can increase the value of stability criterion, and destabilize 
tearing modes. For the balanced tangential neutral beam 
injection, energetic ions have no or little effect on tearing 
modes. The result is qualitatively consistent with the recent 
experimental result in MST, where it was shown that tearing 
modes can be stabilized by CEI. Thus, our analysis suggests 
that tearing modes can be suppressed by co-CEI in RFP with 
appropriate βh.

Here, it is necessary to pointed out that the effects of ener-
getic ions on Δ′ is only considered, which is valid for orbit 
width of energetic ions larger than island width. If the orbit 
width of energetic ions and island width are comparable, the 
effects of energetic ions in the resistive inner region needs to 
be considered.
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